

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 703

SQL Injection Prevention Using the

Metasploit Framework Forweb Application

Dr.S.Saravanan, M.E., Ph.D., Mrs. G Keerthana

M.E PROFESSOR & HEAD ASSISTANTPROFESSOR

Department ofInformationTechnology Department ofInformation Agni CollegeofTechnology, Technology,

Thalambur, Agni College ofTechnology, Chennai-600130.

Submitted: 05-05-2021 Revised: 17-05-2021 Accepted: 20-05-2021

ABSTRACT: These days the world is very much

dependent on web applications. It may be

fordifferent kinds of transactions. These web

applications are used by wide range of users and

they are also vulnerable to various security threats.

Hence providing security to these applications is of

great importance. The prevention for the SQL

injection was based on Oswap and we having the

approach for preventing using the Metasploit

framework.Metasploit framework which is used to

penetrating and in this case we using filter passing

to prevent the attack From the hackers.. SQL

injection Attack It is the most common type of

vulnerability in which a malicious mind person is

inserts its own crafted query as input for retrieving

personal information about others sensitive users.

In this paper, for detection and prevention of SQL

injection attacks using the Metasploit. As per

increasing the dependency on these web

applications also raises the attacks on these

applications. SQL injection Attacks can be

prevented using Metasploit framework Cross Site

Scripting (XSS) are being a major problem for web

applications.

I. CHAPTER 1 INTRODUCTION

1.1 DOMAININTRODUCTION:

Inrecentyears,widespreadadoptionoftheint

ernethasresultedintorapidadvancement in

information technologies. The internet is used by

the general populationfor the

purposessuchasfinancialtransactions,

educationalendeavors,andcountlessotheractivities.T

heuseoftheinternetforaccomplishingimportanttasks,

suchastransferring a balance from a bank account,

always comes with a security risk. Today‘sweb

sites strive to keep their users‘ data confidential and

after years of doing

securebusinessonline,thesecompanieshavebecomee

xpertsininformationsecurity.Thedatabase systems

behind these secure websites store non-critical data

along with sensitiveinformation, in a way that

allows the information owners quick access while

blockingbreak-inattempts from unauthorizedusers.

INTRODUCTION:

A common break-in strategy is to try to

access sensitive information from a databaseby first

generating a query that will cause the database

parser to malfunction, followed byapplying this

query to the desired database. Such an approach to

gaining access to privateinformation is called SQL

injection. Since databases are everywhere and are

accessiblefrom the internet, dealing with SQL

injection has become more important than

ever.Althoughcurrentdatabasesystemshavelittlevuln

erability,theComputerSecurityInstitute discovered

thatevery year about50%of databasesexperience

atleastonesecurity breach. The loss of revenue

associated with such breaches has been estimated

tobeoverfourmilliondollars.Additionally,recentrese

archbythe―ImpervaApplication . Center‖ concluded

that at least 92% of web applications are

susceptible to―maliciousattack‖ (Ke Wei,M.

Muthuprasanna,SurajKothari,2007).

To get a better understanding of SQL injection, we

need to have a good understandingofthekinds

ofcommunicationsthattakeplaceduringatypicalsessi

onbetweenauserand a web application. The

following figure shows the typical communication

exchangebetweenall thecomponents inatypicalweb

applicationsystem.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 704

Figure1:“WebapplicationArchitecture―

Figure1.1 SQL Query Request Result

A web application, based on the above

model, takes text as input from users to

retrieveinformation from a database. Some web

applications assume that the input is legitimateand

use it to build SQL queries to access a database.

Since these web applications do notvali

dateuserqueriesbeforesubmitting

themtoretrievedata,theybecomemoresusceptible to

SQL injection attample, atta

II. CHAPTER 2 LITERATURE SURVEY

2.1 INTRODUCTION:

ThefollowingshowssurveydidforSQL Injection

Prevention.The mostpopular of

theexistingtechniquesisbeendiscussedasfollows

.

2.2 LITERATURESURVEY:

SQL injection comes with a bang and

caused revolution in database attacking . In recent

years, with the explosion in web-based commerce

and information systems, databases have been

drawing ever closer to the network and it is critical

part of network security. Database is the storage

brain of the website. A hacked database is the

source of password and sensitive information like

credit card number, bank account number and

every important thing that is forbidden. SQL

injection can cause severe damage to our database.

Importance should be given for preventing database

exploitation by SQL injection. The aim of this

paper is to create awareness among web developers

or database

administrators about the urgent need for

database security. Our ultimate objective is to

totally eradicate the whole concept of SQL

injection and to avoid this technique becoming a

plaything in hands of exploiters.[1] A successful

SQL injection exploit can read sensitive data from

the database, modify database data

(Insert/Update/Delete), execute administration

operations on the database (such as shutdown the

DBMS), recover the content of a given file present

on the DBMS file system and in some cases issue

commands to the operating system. SQL injection

attacks are a type of injection attack, in which SQL

commands are injected into data-plane input in

order to effect the execution of predefined SQL

commands.[2]

1. HISTORY OF SQL INJECTION-

Ever since the advent of the computer,

there have always been people trying to hack them.

William D. Mathews of MIT discovered a flaw in

the Multics CTSS password file on the IBM 7094

in 1965;

John T. Draper ("Captain Crunch")

discovered a cereal toy whistle could provide free

phone calls around 1971; The Chaos Computer

Club, the Cult of the Dead Cow, 2600, the

infamous Kevin Mitnick, even computing

godfather Alan Turing and his World War II

German Enigma-cipher bustingBombe, all and

more have participated in hacking computers for as

long as computers have existed.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 705

Through the 1980s and 1990s, the world

began to see the advent of the personal computer,

the internet, and the world wide web. Telephone

lines in millions of homes began screaming with

the ear-piercing tones of dial up connections. AOL,

CompuServe, Juno, and more began providing

home users with information portals and gateways

to the web. The information age was born; as was

the age of information security (and, indeed,

insecurity).

As websites began to form by the

thousands per day, so did the technology behind

them. Websites went from merely being static

pages of text and images to dynamic web

applications of custom-tailored content. HTML,

CSS, and JavaScript grew into bigger and better

systems for stitching content together in the

browser, and the browser itself evolved, through

Internet Explorer, Netscape, Firefox, Chrome, and

more. PHP and Perl CGI, among others, became

the languages of choice for backend website

scripting to real-time generate the HTML and other

elements browsers would render. Database systems

came and went, but MySQL became the most

popular. In fact, a lot of things came and went —

Dot-Com bubble, anyone? — but one thing always

remained: web application security.[3]

Here is a small sampling by Mavituna Security:

 In 2012, 97% of all data breaches world wide

were SQL injection attacks.

 In one month, from the end of 2011 to early

2012, over 1,000,000 sites were successfully

attacked with SQL injection.

 SQL injection has remained in the top 10 list

of vulnerabilities compiled by the Open Web

Application Security Project.

2. A SIMPLE SQL INJECTION

The injection process works by

prematurely terminating a text string and appending

a new command.[3] Because the inserted command

may have additional strings appended to it before it

is executed, the malefactor terminates the injected

string with a comment mark "–". Subsequent text is

ignored at execution time.

A simple SQL injection is shown through the

following script

The script builds an SQL query by concatenating

hard- coded strings together with a string entered

by the user:

var Shipcity;

ShipCity = Request.form ("ShipCity");

var sql = "select * from OrdersTable where

ShipCity = '" + ShipCity + "'";

The user is prompted to enter the name of a city. If

she enters Redmond, the query assembled by the

script looks similar to the following:

SELECT * FROM OrdersTable WHERE ShipCity

= 'Redmond'

However, assume that the user enters the following:

Redmond'; drop table OrdersTable–

In this case, the following query is assembled by

the script:

SELECT * FROM OrdersTable WHERE ShipCity

= 'Redmond';drop table OrdersTable–'

The semicolon (;) denotes the end of one query and

the start of another. The double hyphen (–)

indicates that the rest of the current line is a

comment and should be ignored. If the modified

code is syntactically correct, it will be executed by

the server. When SQL Server processes this

statement, SQL Server will first select all records in

OrdersTable where ShipCity is Redmond. Then,

SQL Server will drop Orders Table.

As long as injected SQL code is syntactically

correct, tampering cannot be detected

programmatically. Therefore, you must validate all

user input and carefully review code that executes

constructed SQL commands in the server that you

are using. Coding best practices are described in

the following sections in this topic.[2]

3. ATTACK INTENT

Attacks can also be characterized based on the

goal, or intent,of the attacker. Therefore, we can

define[4] several intents as follows:

Identifying injectable parameters: The attacker

wants to probe a Web application to discover which

parameters and user-input fields are vulnerable to

SQLIA.

Performing database finger-printing: The

attacker wants to discover the type and version of

database that a Web application is using. Certain

types of databases respond differently to different

queries and attacks, and this information can be

used to fingerprint the database. Knowing the type

and version of the database used by a Web

application allows an attacker to craft

databasespecific attacks.

Determining database schema: To

correctly extract data froma database, the attacke

often needs to know database schema information,

such as table names, column names, and column

data types. Attacks with this intent are created to

collect or infer this kind of information.

Extracting data: These types of attacks

employ techniques thatwill extract data values from

the database. Depending on the type of the Web

application, this information could be sensitive and

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 706

highly desirable to the attacker. Attacks with this

intent are the most common type of SQLIA.

Adding or modifying data: The goal of

these attacks is to add or change information in a

database.

Performing denial of service: These

attacks are performed to shut down the database of

a Web application, thus denying service to other

users. Attacks involving locking or dropping

database tables also fall under this category.

Evading detection: This category refers to

certain attack techniques that are employed to

avoid auditing and detection by system protection

mechanisms.

Bypassing authentication: The goal of

these types of attacks isto allow the attacker to

bypass database and application authentication

mechanisms. Bypassing such mechanisms could

allow the attacker to assume the rights and

privileges associated with another application user.

Executing remote commands: These types

of attacks attempt to execute arbitrary commands

on the database. These commands can be stored

procedures or functions available to database users.

Performing privilege escalation: These

attacks take advantageof implementation errors or

logical flaws in the database in order to escalate the

privileges of the attacker. As opposed to bypassing

authentication attacks, these attacks focus on

exploiting the database user privileges.

 Sources[5] of SQL Injection Attack

 Injection through user input

Malicious strings are introduced in web forms

through user inputs.

 Injection through cookies

Modified cookie fields contain attack strings.

 Injection through server variables Headers are

manipulated to c ontain attack strings.

5.1 Second-order injection

 Trojan horse input seems fine until used in a

certain situation.

Attack does not occur when it first reaches the

database, but when used later on.

Input: admin– ===> admin\–

queryString ="UPDATE users SET pin=" +

newPin +

" WHERE userNa me=" + userName + " AND

pin=" + oldPin;

queryString =UPDATE users SET pin=0 WHERE

userName= admin– AND pin=1;

 Types of SQL Injection

 Piggy-backed Queries

Attack Intent: Extraction, modify datasets,

execute remote commands, DoS

Different than other attacks not only because

hacker attempts to execute two commands at once

but also due to the first query not intended to

modify or cause damage. First query is valid and

runs normally but when delimiter is recognized

DBMS executes second malicious query System

that is vulnerable to piggy-backed queries is

generally due to misconfiguartion which allows for

multiple statements in one query

 Tautologies

This attack works by inserting an always

true fragment into a WHERE clause of the SQL

statement[7]. This is often used in combination

with the insertion of a double dash — to cause the

remainder of a statement to be ignored, ensuring

extraction of largest amount of data. Tautological

injections can include techniques to further mask

SQL expression fragments, such as the following:

 or 'simple' like 'sim%' —

 or 'simple' like 'sim' || 'ple' —

The || in the example is used to concatenate strings,

when evaluated the text 'sim' ||

'ple'becomes'simple'.

 Alternate Encodings

In this case, text is encoded to avoid

detection by defensive coding practices. It can also

be very difficult to generate rules for a WAF to

detect encoded input. Encodings, in fact, can be

used in combination with other attack

classifications. Since databases parse comments out

of an SQL statement prior to processing it,

comments are often used in the middle of an attack

to hide the attacks pattern. Scanning and detection

techniques, including those used in WAFs, have

not been effective against alternate encodings or

comment based obfuscation because all possible

encodings must be considered.

 Stored Procedure Attacks: These attacks

attempt to execute database stored procedures.

The attacker initially determines the database

type (typically through illegal/logically

incorrect queries) and then uses that

knowledge to determine what stored

procedures might

exist. Contrary to popular belief, using stored

procedures does not make the database

invulnerable to SQL injection attacks. Stored

procedures can be vulnerable to privilege

escalation, buffer overflows, and even provide

administrative access to the operating system.

 Illegal/Logically Incorrect Queries : Attackers

use this approach to gather important

information about the type of database and its

structure. Attacks of this nature are often used

in the initial reconnaissance phase of the attack

to gather critical knowledge used in

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 707

subsequent attacks. Returned error pages that

are not filtered can be very instructive. Even if

the application sanitizes error messages, the

fact that an error is returned or not returned can

reveal vulnerable or injectable parameters.

Syntax errors identify injectable parameters;

type errors help decipher data types of certain

columns; logical errors, if returned to the user,

can reveal table or column names.

The specific attacks within this class are

largely the same as those used in a Tautological

attack. The difference is that these are intended to

determine how the system responds to different

attacks by looking at the response to a normal

input, an input with a logically true statement

appended (typical tautological attack), an input

with a logically false statement appended (to catch

the response to failure) and an invalid statement to

see how the system responds to bad SQL. This will

often allow the attacker to see if an attack got

through to the database even if the application does

not allow the output from that statement to be

displayed.

 Union Query: This attack exploits a vulnerable

parameter by injecting a statement of the form:

foo'UNION SELECT <rest of injected query>

The attacker can insert any appropriate query to

retrieve information from a table different from the

one that was the target of the original

statement.The database returns a dataset that is the

union of the results of the original first query and

the results of the injected second query.

4. PREVENTION TECHNIQUES

 Defensive Coding Best Practices

The root cause of SQL injection vulnerabilities is

insufficient input validation.

Encoding of inputs: Injection into a string

parameter is often accomplished through the use of

meta-characters that trick the SQL parser into

interpreting user input as SQL tokens. While it is

possible to prohibit any usage of these meta-

characters, doing so would restrict a non-malicious

users ability to specify legal inputs that contain

such characters. A better solution is to use

functions that encode a string in such a way that all

meta-characters are specially encoded and

interpreted by the database as normal characters.

Positive pattern matching: Developers should

establish input validation routines that identify

good input as opposed to bad input. This approach

is generally called

positive validation, as opposed to negative

validation, which searches input for forbidden

patterns or SQL tokens. Because developers might

not be able to envision every type of attack that

could be launched against their application, but

should be able to specify all the forms of legal

input, positive validation is a safer way to check

inpts.

Identification of all input sources: Developers must

check all input to their application. As we outlined ,

there

 Penetration Testing

 Static Analysis of Code

 Safe Development Libraries

Are many possible sources of input to an

application. If used to construct a query, these input

sources can be a way for an attacker to introduce an

SQLIA. Simply put, all input sources must be

checked.

Although defensive coding practices

remain the best way to prevent SQL injection

vulnerabilities, their application is problematic in

practice. Defensive coding is prone to human error

and is not as rigorously and completely applied as

automated techniques. While most developers do

make an effort to code safely, it is extremely

difficult to apply defensive coding practices

rigorously and correctly to all sources of input. In

fact, many of the SQL injection vulnerabilities

discovered in real applications are due to human

errors: developers forgot to add checks or did not

perform adequate input validation [10, 11,12]. In

other words, in these applications, developers were

making an effort to detect and prevent SQLIAs, but

failed to do so adequately and in every needed

location. These examples provide further evidence

of the problems associated with depending on

developers use of defensive coding.

Moreover, approaches based on defensive

coding are weakened by the widespread promotion

and acceptance of so-called pseudoremedies [9].

We discuss two of the most commonly-proposed

pseudo-remedies. The first of such remedies

consists of checking user input for SQL keywords,

such as FROM, WHERE, and SELECT, and SQL

operators, such as the single quote or comment

operator. The rationale behind this suggestion is

that the presence of such keywords and operators

may indicate an attempted SQLIA. This approach

clearly results in a high rate of false positives

because, in many applications, SQL keywords can

be part of a normal text entry, and SQL operators

can be used to express formulas or even names

(e.g., OBrian). The second commonly suggested

pseudo- remedy is to use stored procedures or

prepared statements to prevent SQLIAs.

Unfortunately, stored procedures and prepared

statements can also be vulnerable to SQLIAs unless

developers rigorously apply defensive coding

guidelines. Interested readers mayrefer to

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 708

[30,31,29,16] for examples of how these pseudo-

remedies can be subverted.

VIII. DETECTION AND PREVENTION

TECHNIQUES

Researchers have proposed a range of

techniques to assist developers and compensate for

the shortcomings in the application of defensive

coding.

Black Box Testing. Huang and colleagues

[8] propose WAVES, a black-box technique for

testing Web applications for SQL injection

vulnerabilities. The technique uses a Web crawler

to identify all points in a Web application that can

be used to inject SQLIAs.

It then builds attacks that target such

points based on a specified list of patterns and

attack techniques. WAVES then monitors the

applications response to the attacks and uses

machine learning techniques to improve its attack

methodology. This technique improves over most

penetration-testing techniques by using machine

learning approaches to guide its testing. However,

like all black-box and penetration testing

techniques, it cannot provide guarantees of

completeness.

Static Code Checkers. JDBC-Checker is a

technique for statically checking the type

correctness of dynamically- generated SQL queries

[28,29]. This technique was not developed with the

intent of detecting and preventing general SQLIAs,

but can nevertheless be used to prevent attacks that

take advantage of type mismatches in a

dynamically-generated query string. JDBC-

Checker is able to detect one of the root causes of

SQLIA vulnerabilities in code improper type

checking of input. However, this technique would

not catch more general forms of SQLIAs..

III. CHAPTER 3
SYSTEM ANALYSIS AND DESIGN

3.1 EXISTINGSYSTEM:

It permits attackers to get unauthorized

access to the database by inserting malicious SQL

code into the database application through user

input parameters. In this paper, we propose input-

based analysis approach to detect and prevent SQL

Injection Attacks (SQLIA), as an alternative to the

existing solutions. This technique has two part (i)

input categorization and (ii) input verifier. We

provide a brief discussion of the proposal w.r.t the

literature on security and time cost point of view.

3.2 DISADVANTAGESOFEXISTI

NGSYSTEM:

DuetouseofSQLI codes,the attacker may using

the defender techniques to break the SQLI

firewall or the OSWAL firewall.

Itismore complicated to the previous SQL

injection attacks.

Thetransmissionsfrom SQLI that build the

firewall which will allow the attackers to

perofrom any kind of SQl queries in Platform

oriented Login.

PROPOSEDSYSTEM:

Wewilluse the Metasploit Framework

which is used to prevent any type of attacks

that made from the attacker and it will acts as

online firewall agent.When the Metasploit

framework is deployed with the web

application , it automatically create a hidden

firewall which cannot able to visible by the

attackers.

By using this method we can prevent

multiple attack that multiple attackers.

Structured Query Language (SQL) injection and

cross-site scripting remain a major threat to data-

driven web applications. Instances where hackers

obtain unrestricted access to back-end database of

web applications so as to steal, edit, and destroy

confidential data are increasing. Therefore,

measures must be put in place to curtail the

growing threats of SQL injection and XSS attacks.

This study presents a technique for detecting and

preventing these threats using Knuth-Morris-Pratt

(KMP) string matching algorithm. The algorithm

was used to match user‘s input string with the

stored pattern of the injection string in order to

detect any malicious code. The implementation was

carried out using PHP scripting language and

Apache XAMPP Server. The security level of the

technique was measured using different test cases

of SQL injection, cross-site scripting (XSS), and

encoded injection attacks. Results obtained

revealed that the proposed technique was able to

successfully detect and prevent the attacks, log the

attack entry in the database, block the system using

its mac address, and also generate a warning

message. Therefore, the proposed technique proved

to be more effective in detecting and preventing

SQL injection and XSS attacks

Deployment of Metasploit framework over

Internet

Internet is fast becoming a household

technology with 4.39 billion users in January 2019

compared to 3.48 billion users in January 2018 [1].

This showed that more than one million new users

got connected daily. This growth rate is being

facilitated by data-driven web applications and

services which enable users to transact their online

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 709

activities with ease. Most modern organizations

and individuals heavily rely on these web

applications to reach out to their numerous

customers. Users‘ inputs via web applications are

used to query back end databases so as to provide

the needed information. This trend has therefore

opened up web applications and services to attacks

by hackers. Moreover, the popularity of web

application in social networking, financial

transaction, and health problems are increasing

very rapidly; as a result, software vulnerabilities are

becoming very critical issues, and thus, web

security has now become a major concern [2]. The

vulnerabilities are mostly application layer

vulnerabilities such as domain name server attacks,

Inline Frame flaws, remote file inclusion, web

authentication flaws, remote code execution, XSS,

and SQL injection [3, 4]. A survey carried out by

Open Web Application Security Project (OWASP)

identified top 10 vulnerabilities as at June 2019 to

be injection flaws, broken authentication and

session management, sensitive data exposure, XML

external entity, broken access control, security

misconfiguration, XSS, insecure deserialization,

using components with known vulnerabilities,

insufficient logging, and monitoring. However,

among these forms of attacks, XSS and SQL

injection have been identified as the most

dangerous [5]. The WordPress Security Learning

Center also submits that if SQL injection and XSS

vulnerabilities could be handled in a code, then

65% vulnerabilities has been eliminated. Since web

applications use data supplied by users in SQL

queries, hackers can manipulate these data and

insert SQL meta-characters into the input fields so

as to access, modify, or delete the content of the

database. For instance, the WHERE clause in the

SQL query SELECT*FROM users WHERE

password = 1234 could be manipulated when

hackers supply inputs like ‗anything‘ OR ‗1‘ = ‗1‘;

#. The WHERE clause now contains two

conditions separated with the logical operator OR.

The first condition might not be TRUE, but the

second condition must be TRUE because 1 is

always equals 1, and the logical operator ―OR‖

returns TRUE if either or both of the conditions are

TRUE. Hence, the hacker gains access without a

need to know the password. Sometimes, wrong

input values can also be supplied intentionally so

that error messages that will help the attackers to

understand the database schema will be revealed.

Therefore, SQL injection is a serious threat for web

application users.

Cross-site scripting (XSS) attacks

XSS is another similar attack where

hackers prepare and execute a fragment of

JavaScript in the security context of the targeted

domain thereby incorporating malicious contents

into web pages presented by a trusted web

application. Most web applications that do not

properly screen user input before loading web

pages are susceptible to XSS attacks. Once a site

has been affected, users could be redirected to

automatically open malicious websites, the entire

user session could be hijacked, and users‘ login

details could also be stolen. Since the content is

claimed to be from a trusted server, it is processed

like normal contents. For example, the pseudo code

below shows how latest comments are displayed on

a website using a simple sever-site script:

The scripts assume that the comments

consist of only text. However, since the user‘s input

is directly included, an attacker can submit his

comment as

―<script>doSomethingEvil();</script>‖. Therefore,

users who visit the page will receive the following

response:

figureb

When the user‘s browser loads the page, it

executes whatever JavaScript is contained inside

the <script > tags. In this case, the attacker can

write a JavaScript function that steals the victim‘s

session cookie. This session cookie can be used to

impersonate the victim subsequently.

XSS vulnerabilities have been categorized

into three categories which are reflected, stored,

and Document Object Model (DOM)-based [3].

DOM-based vulnerabilities occur when active

contents on a web page (mostly JavaScript) accept

user inputs which are malicious thereby causing the

execution of injected code. Stored XSS

vulnerabilities occur when inputs collected via web

applications are malicious and stored in the

database for immediate or future use. It is one of

the most dangerous of all XSS vulnerabilities

because in as much as it is in the database, the

hacker can manipulate the contents of the database

at will [1]. Reflected XSS vulnerabilities are

different from other XSS vulnerabilities because it

attacks clients who accesses or loads a malicious

URL. Though several techniques aimed at

curtailing the growing hazards of these attacks have

been reported in literature, many have not been

able to fully address all scope of the problem.

Several security techniques have been proposed

towards preventing data and information from

unauthorized attacks [6,7,8], and attackers

continually devise new security vulnerabilities that

could be exploited. Therefore, new techniques

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 710

aimed at detecting and preventing these attacks are

essential.

SQL injection attacks

SQL-injection attacks could be in six categories:

a) Boolean-based SQL injection or tautology

attack:

Boolean values (True or False) are used to

carry out this type of SQL injection. The malicious

SQL query forces the web application to return a

different result depending on whether the query

returns a TRUE or FALSE result. For instance,

"aaa O R 2 = 2" has been inserted into SQL query

"SELECT ∗ FROM users WHERE password = aaa

OR 2  =  2" as the password so as to alter the

structure of the WHERE clause of the original

query. This yields a SQL query with two different

conditions separated with a logical operator OR.

The first condition "password = aaa" might not be

true, but the second condition ―2 = 2‖ must be true.

Therefore, the logical operator OR returns true if at

least one of the operand is true thereby forcing the

web application to return a different result.

b) Union-based SQL injection: this is the most

popular of all the SQL injections. It uses the

UNION statement to integrate two or more select

statements in a SQL query thereby obtaining data

illegally from the database. For instance, in the

SQL query "SELECT ∗ FROM customers WHERE

password = 123 UNION SELECT creditCardNo,

pin FROM customers" the attacker injects the SQL

statement "123 UNION SELECT creditCardNo,

pin FROM customers" instead of the required

password. The query therefore exposes all the

credit card numbers with their PINs from the

customer‘s table.

c) Error-based SQL injection: this is the simplest of

all the SQL injection vulnerabilities; however, it

only affects web applications that use MS-SQL

Server. The most common form of this

vulnerability requires an attacker to supply an SQL

statement with improper input causing a syntax

error such as providing a string when the SQL

query is expecting an integer. For example, the

SQL query: SELECT * FROM customer WHERE

pin = convert (int, (SELECT firstName FROM

customer LIMIT 1)) tries to convert the first name

of the first customer in the customer‘s table into

integer type which is not possible. As a result, it

causes the database server to throw an error

containing the information about the structure of

the table.

d) Batch query SQL injection/piggy backing

attacks: this form of injection is dangerous as it

attempts to take full control of the database. An

attacker terminates the original query of the

application and injects his own query into the

database server. For instance, considering the SQL

query: aaa; INSERT INTO users VALUES

(‗Abubakar‘, ‗1234‘);#, the first semicolon (;)

terminates the original query, and query adds the

username ―Abubakar ‖ and password ―1234‖ to the

users table ,and the hash (#) comments out the

remaining query so that it will not be executed by

the server. However, this form of attack works on

only SQL-Server 2005, because it is the only server

that accepts multiple queries at a time.

e) Like-based SQL injection. This injection type is

used by hackers to impersonate a particular user

using the SQL keyword LIKE with a wildcard

operator (%). For instance, an attacker can inject

input: ―anything OR username LIKE ‗S%‘ ;#

instead of a username to have SQL query: SELECT

* FROM users WHERE username =‘ anything OR

username LIKE ‗S%‘; #‖. The LIKE operator

implements a pattern match comparison, that is, it

matches a string value against a pattern string

containing wildcard character. The query searches

the user‘s table and returns the records of the users

whose username starts with letter S. The wildcard

operator (%) means zero or more characters (S…),

and it can be used before or after the pattern.

f) Hexadecimal/decimal/binary variation attack

(encoded injection): in this type of injection, the

hacker leverages on the diversity of the SQL

language by using hexadecimal or decimal

representations of the keywords instead of the

regular strings and characters of the injection code.

For instance, the traditional SQL injection code:

UNION SELECT * FROM users; # could be

replaced with:

figurec

Therefore, SQL injection vulnerability is a

serious attack that must be prevented. Its different

categories have further revealed that a prevention

technique that works for a specific category may

not perfectly work for another category. This has

made the quest to eradicate SQL injection

vulnerabilities an open field of research.

The proposed detection and prevention technique

With a view to come up with a technique

that could detect and prevent the various forms of

SQL injection and XSS attacks, the patterns for

each attack were studied, and solutions were

proffered based on these patterns. The

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 711

methodology employed in this study is in five

phases: formation of SQL injection string pattern,

designing parse tree for the various forms of

attacks, detecting SQL-injection and XSS attacks,

preventing SQL-injection and XSS attacks using

KMP algorithm, and formulating the filter

functions.

Formation of SQL injection string patterns

Every form of attacks has certain characters and

keywords that hackers do manipulate to perpetuate

their attacks. These are retrieved and documented

as made available in Tables 1 and 2.

Table 1 Special characters used to compose SQL-

injection code

Full size table

Table 2 Keywords used to compose SQL-injection

code

Full size table

These characters and keywords are used to form

malicious codes that are used to carry out the

various forms of attacks. Identifying these injection

codes will help in coming up with how to detect

and prevent these attacks. The injection codes

common to the various forms of attacks are

provided in Table 3.

Table 3 Different forms of injection code with their

common patterns

Full size table

Designing parse tree for the various forms of

attacks

Parse tree was used to represent the syntactic

pattern of the various forms of SQL-Injection and

Cross Site Scripting attacks. The parse trees are as

follows:

(i).Boolean-based SQL injection attacks

figured

(‗) followed by logical operator OR and a true

statement such as ‗1‘ = ‗1‘;#,

Detecting SQL injection and XSS attacks

The various types of SQL injection and XSS

attacks were detected thus:

(i).Boolean-based SQL-injection attacks: As

presented in Table 3, it was deduced that most

Boolean-Based SQL injection strings have a single

quote (‗) followed by logical operator OR and a

true statement such as ‗1‘ = ‗1‘;#, ‗a‘ <> ‗b‘ ;# , ‗2

+ 3‘ < = ‗10‘ ;# (Fig. 1).

(ii).Union-based SQL injection attacks: Also, most

union-based SQL injection strings have a single

quote (‗) followed by a UNION keyword, the SQL

keyword SELECT, one or more identifiers, the

SQL keyword FROM, one or more identifiers then

a semicolon (;) with hash (#). Example includes

‗union select * from users; # or ‗ union select name

from a; # (Fig. 2).

(iii).Error-based SQL injection attacks: The

presence of a single quote (‗) from the user‘s input,

followed by zero or more SQL functions, indicates

the presence of error-based SQL injection attacks.

Example includes 111‘ convert (int, ‗abcd‘); A‘

avg(‗&%$#@*‘), and ‗ round (‗abc‘, 2) (Fig. 3).

(iv).Batch query SQL injection attacks: Input

strings with a single quote (‗) followed by a SQL

keyword ―DROP‖, ―DELETE‖, ―INSERT‖ etc.

then one or more identifiers, followed by semicolon

(;) with a hash (#). Examples include aaa‘; delete *

from users; # or ‗; drop table users; # (Fig. 4).

(v).Like-based SQL injection attack: from Table 3,

category (e) shows the different forms of like-based

SQL injection attack, and it is detected when the

input string contains a single quote (‗) followed by

the logical operator OR, followed by one or more

identifiers, followed by the SQL keyword LIKE,

followed by a single quote (‗), followed by the

wildcard operator (%), followed by a single quote

(‗), followed by semicolon with hash. Example

include ‗OR username LIKE ‗S%‘# and ‗OR

password LIKE ‗%2%‘;# (Fig. 5).

(vi).XSS attack: this can be detected when a

JavaScript open tag ―<script>‖ is encountered from

the input string, followed by zero or more

characters and/or a single quote (‗), followed by a

JavaScript closing tag ―</script>‖ as in

<script>alert(‗XSS‘);</script>. If it were to be

encoded XSS attack, such will have a JavaScript

open tag ―<script>‖ followed by one or more

ASCII code, hexadecimal number, HTML name, or

HTML number of a character and/or a single quote

(‗), followed by a JavaScript closing tag

―</script>‖ as in <script>alert(" XSS ");

</script> (Fig. 6).

Parse tree to depict Boolean-based SQL

injection attacks. (ii). Union-based SQL injection

string.A parse tree to depict union-based SQL

injection attacks. (ii). Error-based SQL injection

string.Parse tree to depict error-based SQL

injection attacks. (ii). Batch query SQL injection

attacks.Parse tree to depict SQL injection attacks

using batch query. (ii). Like-based injection

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 712

attack.Parse tree to depict like-based injection

attacks. (ii). XSS injection attacks

Parse tree to depict XSS injection attacks

Preventing SQL-injection and XSS attacks using

KMP algorithm

KMP string matching algorithm was used to

compare user‘s input string with different SQL

injection and XSS attacks patterns that have been

formulated.

Formulating the filter functions

The filter() function was formulated to

prevent SQL injection and XSS attacks. This

function contains other functions that have been

written each to detect a particular form of attack. If

at least one function returns True, then, the filter ()

will block that user, reset the HTTP request, and

display a corresponding warning message. The first

statement in the algorithm below represents user‘s

input which is collected from the web form using

POST Method, and it is donated by I. The filter()

then collects the user‘s input and firstly converts

any ASCII String found in order to prevent

encoded injection attack. If there is no any ASCII

String and it is not empty, then, the user‘s input

will be parsed to other functions in order to check

whether it contains some injection code of

Boolean-based SQLI, Union-based SQLI, Error-

based SQLI, Batch query SQLI, Like-based SQLI,

and XSS, and the outcomes of the functions are

represented as a, b, c, d, e, and f respectively. If one

of the result returns true, then, an injection string is

found in the user‘s input, and it then triggers some

functions: blockUser(), resetHTTP(), and

warningMessage() so that to block the user, reset

the HTTP request and issue a warning message.

Otherwise, access is granted. The pseudo code

illustrating this process goes thus Formulating the

checkBooleanBasedSqli() function: this was used

to prevent Boolean-based SQL injection

attack:.Formulating the checkUnionBasedSqli()

function: this was used to prevent union-based SQL

injection attack.Formulating the

checkBatchQuerySqli() function: this was used to

prevent batch query SQL injection

attack:.Formulating the checkLikeBasedSqlis()

function: this was used to prevent like-based SQL

injection attack.Formulating the checkXss()

function: this was used to prevent XSS attacks.

Therefore, to detect and prevent any of the

attacks, every input strings will be passed through

all the functions formulated. If at least one function

return True, then, the following functions will be

triggered: blockUser(), resetHTTP(), and

warningMessage(). These functions are used to

interact with the prospective hackers.

3.3 ADVANTAGES:

Providesalert to the admin of web application

when the attacks happens.

Prevent From Multiple Attcaks.

Automatically it will create cloud firewall.

Appnotificationtotheuser.

3.4 APPLICATIONS:

Thisprojecthelpsin preventing any time of

Sql injection attack by the hackers to prevent

in the Web based Application.

Implementation of this project also gives rise

many cyber security projects etc.,

IV. CHAPTER 4
SYSTEMSPECIFICATIONS

System Specifications is a structured

collection of information thatembodies the

requirements of a system. The System

Specification describes the functional and non-

functional requirements posed on a system element

(system, Enabling System or segment). In order to

prepare the System Specification, the requirements

will be derived from the specifications of higher

system elements or from the Overall System

Specification.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 713

4.1:SystemArchitecture

Figure4.1:SystemArchitecture

Figure 4.2 Metasploit Framework Overflow

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 714

4.3WORKING

In this project This technique proposed

serves as an e_ective method for preventing

theSQLIA and session hijacking attack. The

method involves the use of hashing tech-nique,

here the hashing algorithm used is SHA1.The SHA

i.e. Secure Hash Algorithm is based on the concept

of hash function.The basic idea of a hash function

is that it takes a variable length message as input

and produces a _xed length message as output

which can also be called as hash or message-digest.

The technique behind building a good, secured

cryptographic hash function is to devise a good

compression function in which each input bit

a_ects as many output bits as possible . It is used

with the Digital Signature Standard (DSA) for

digital signature so it has a particular

importance.[3] SHA-1 has a set of cryptographic

hash functions very similar to the MD family of

hash functions. But MD family uses more bits in

hash function. This is the main difference between

MD and SHA1. Because of this difference SHA-1

is more secure.SHA-1 differs from SHA-0 only by

a single bitwise rotation in the message schedule of

its compression function. SHA-1 appears to

provide greater resistance to attacks. In SHA-1

input data is called message and the hash value is

called message digest. Hash function takes a

variable length message as an input and as an

output produce a _xed length message which can

also be called hash or message digests. SHA-1 has

a message size of 264 bits and a message digest of

160 bits. SHA-1 is designed so that it is practically

infeasible to _nd output of the two input messages

to be the same. It is also impossible to get back the

input message from the obtained message.

2.1 SQL Injection Attack

The technique uses an authentication

query to check for registered users of

theapplication. The authentication query matches

the user entered credentials to the

credentials stored in the database during user

registration. In this implementation, for each user

authentication query to access the database, a

unique _fingerprint is generated using a hashing

algorithm, based on the authentication credentials

of the user, provided during the user registration.

This unique _ngerprint of the user is

stored along with the access credentials in the

database.[2]

When the user logs into the application providing

the access credentials a hash digest is dynamically

calculated from the user provided credentials. This

dynamically calculated hash digest is then matched

to the hash digest already stored in the database

which is calculated during the user registration. The

user is permitted access to the application only if

the two hash digest match. This can be considered

similar to storing a unique digital _ngerprint of the

user during the registration and checking this

digital _ngerprint upon every user login. When the

attacker tries to perform an SQLIA the hash digest

generated dynamically will not match hence

preventing the attacker from performing the

SQLIAs.[8]

For Example: When the SQL query

" Select * from TableName where username =

UserName and password = Password"

is passed through the SHA1 hash algorithm it

generates a message digest, which is unique. When

the user logs in with his login credentials, the hash

digest of the user authentication query is

dynamically calculated and compare it against the

already stored hash digest. If the hash digest

matches then there is no SQLIA. This methodology

works because SQL has a _xed syntax for

authentication query and if 15

the adversary tries to perform a SQLIA then the

syntax of the query would be dif- ferent. Thus the

hash digest computed is di_erent and the user is not

authenticated.

The hash function is used for authentication as it is

collision resistant. Also hash functions have

avalanche property i.e. if even a character of input

query changes,the output hash digest varies by

more than half the output characters. The process

ow for this implementation is shown in _gure 1.

Pseudo Code for prevention of SQLIA:

1. On user registration, generate hash of the select

query

HashDigest = SHA1(Select from TableName

where username = UserName and password 2.

Store HashDigest as an attribute in the database

against the user information.

3. On user login, during authentication calculate

dynamically the hash value of

the query against the user name and password

entered using SHA1.

4. Compare the dynamically calculated hash

against HashDigest.

5. User is authenticated only if the two hash digests

match

6. Else, either the user authentication provided is

invalid or it is a session hijacking

attack.

Through the implementation model, the following

SQLIAs are prevented.

1. Tautology Attack: In this attack the adversary

tries to bypass the user authen- tication _elds

required to access the application. The

authentication query for roviding access to the user,

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 715

checks the database for registered users. This

authentication query usually has a WHERE

condition. The attacker takes

16

Figure 1. Process ow of SQL Injection prevention

Technique

17

advantage of this condition to perform a SQLIA.

The attacker can insert the condition which would

always evaluate to true.

' or 1=1--

With this the attacker will close the actual

authentication query, insert an OR condition which

will always evaluate to true and comment out any

other authentication conditions present in the

query.

2. Piggy Backing Attack: The main aim of this

attack is to modify or add data, data extraction,

dropping or deleting user or database tables, remote

execu- tion of commands and performing service

denials. The attacker can use the statement "'or

1=1;drop table AdminTable:{ " to perform this

attack.

Here the attacker closes the current authentication

statement and then piggy backs another SQL query

which can extract information, delete or drop any

other table from the database. Using this attack the

attacker can delete the

permissions table and gain access to any database

tables.

3. Union Attacks: The attacker uses the SQL

UNION operator to retrieve records from another

table. An attacker can use the SQL statement

"'UNION select * from AllTables; " for Union

attack.

The attacker here tries to get information from the

other database tables by using union operator.

4. Blind SQL Injection attack: A way of evaluating

if a system is vulnerable to attacks is by

considering the query obtained from string

Select _ from users WHERE username =0 user0

18

and suppose it is used to display public user

information on a Web page. In particular, data from

the _rst returned record are shown. To see if this

can be

exploited in a blind injection it is enough to inject

the following two usernames:

luccio AND 1 = 0

luccio AND 0 = 0

If the system is not vulnerable to attacks, e.g., by

_ltering user input, it will

behave in the same way in the two cases. If it is

vulnerable, instead, the results of the query will be

empty in the _rst case (1=0 is not true), and the

same as for luccio in second case (given that 0=0 is

always true). What will be

displayed in case of an empty query depends on

how the application handles that case: it could be

either an error message or a broken Web page. In

any case, the ability of distinguishing true and false

answers is enough to mount a BSQLi attack.

The attack proceeds by

(a) Injecting a query

(b) Comparing the result with the previous pages to

check if the resulting query is true or false. Items

4a and 4b are run again as many times as

necessary

2.2 Session Hijacking

Hypertext Transfer Protocol (HTTP) uses session

based communication to keep a user/browser state;

hence an HTTP session is prone to the session

injection attack. An HTTP session cookie is stored

in a users browser to preserve the tem- porary state

of a users session. Like for example, once the user

is authenticated by the web application, the session

state is saved so that querying the database is not

required again and again for authentication. Also

session cookies can be used to save the

intermediate state of users session between

navigation of pages. It can be thought of as a

volatile quick accessible memory assigned to a user

who is accessing the web application.

The session cookies are usually stored in the clients

browser; these cookies are usually transmitted over

an insecure channel. If this session cookie is

obtained by a passive attack then the user's session

can be compromised. This type of attack is known

as session sidejacking, here attacker can use packet

sni_ng tools to capture the network tra_c between

two principals and to steal their session cookies.

Another type of session hijacking attack is Session

_xation, here the attacker can set the users session

id to any session id know to him. This could be

done by the attacker by sending an email to the user

with a link that opens a session whose session id is

known to the attacker. Alternatively, another type

of session hijacking attack can be done by cross-

site scripting, where the adversary tricks the user to

run a code which is treated as trustworthy as it

appears to belong to the server. This allows the

attacker to obtain the session cookie and perform

session hijacking. Any legitimate user of an

application can be the victim of session hijacking

attack. Initially the legitimate user sends the

application request to the application server. The

server then asks for user authentication, for which

the user responds with his credentials (here it is

considered a user is already registered with the

applicati on).

The server now authenticates the user and

establishes a user session with a unique session ID

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 716

to keep track of the user session.

V. CHAPTER 5
MODULEEXPLANATION

5.1 LIST OFMODULES:

5.1.1 Deploy Metasplloit Framework Over Web

Application

5.1.2 Pass the Required Filter To Prevent Attack

5.1.1Deploy Metasplloit Framework Over Web

Application

The Metasploit framework should embed

with the we application in case to prevent the Web

application from the hackers or the attackers From

the Malicious attack.Metasploit is recognized as a

popular penetration testing framework as well as a

toolkit. In general, it is an important tool being

used to exploit security vulnerabilities in programs

and taking advantage of such vulnerabilities to put

control over an information system. It provides

personals with the facility to create their own

exploits for security vulnerabilities and use them to

attack machines.

Particularly talking about the automated

assessment of security vulnerabilities, it has

emerged as the most popular tool to perform

hacking operations. Alongside this, it has been a

critical tool used to protect an organization‘s

network. It is an effective tool used to identify and

exploit an organization‘s security holes that most of

the attackers use Metasploit as a tool to attack a

vulnerable system.

How it works

Metasploit is a suite of several

applications being used to automate several stages

of penetration testing. It can extend its use to its

framework in the case to identify a security

vulnerability and exploit it using the controlling

interface along with the post-exploitation and

reporting tools. Its framework extracts data from a

vulnerability scanner using the information related

to the vulnerable hosts to detect vulnerabilities to

exploit them and performing an attack with the help

of a payload and exploit the system.

Attackers exploit results extracted from

the vulnerability scanner and import them into

Armitage, a graphical cyber attack management

tool for the Metasploit Project to recognize

vulnerabilities with its modules. After identifying

the vulnerabilities attackers utilize a usable exploit

to affect the system and get a shell and launch

Meterpreter, a dynamically extensible payload, to

control the system.

Payloads refer to the commands being

used to execute on the local system after gaining

access through an exploit. It might include

documentation and a database of techniques

utilized to develop a functioning exploit after the

identification of vulnerability. These payloads

typically comprise components to extract

passwords from the local system, install other

software or to restrain the hardware alike recently

available tools like BO2K.

5.1.1 Deploy Metasplloit Framework Over Web

Application

Devoiding Metasploit-oriented attacks

Being an information security tool, Metasploit

finds its applications in both security defense and

attacks. Malicious hackers utilize it against

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 717

organizations to exploit security vulnerabilities and

allowing them unauthenticated access to the

networks, applications, and information systems.

5.1.2 Pass the Required Filter To Prevent Attack

The filter are used to prevent the attacker which are

associated with the framework and it doesn‘t allow

the hackers or the attackers to make an SQL

injection over the website.

5.1.3 Pass the Required Filter To Prevent

Attack

Once you have used Wireshark and built

filters enough times, you tend to remember the

ones you use most often and can simply type them

in the filter window. One feature which is a great

help is the fact that the filter window will change

color, letting you know if the filter you are creating

is correct or not. As you type in your filter, the

window will turn almost a reddish pink color

indicating that the statement is incorrect. Once you

have fixed or finished your statement and it is

correct, the window will be green. In the below

example, I created a simple filter that will only

show me the packets that pertain to the listed IP

address. In this instance, Wireshark will display the

packets that the listed IP address was either the

sender or receiver. Once you are satisfied with your

filter.

Once we have our capture file filtered so

that we are only looking at what we want, we can

now look at the remaining streams. As you can see

in the picture below, I have filtered my capture file

by using a single IP address and the first two

packets listed are the SYN and SYN-ACK of a

connection. These two packets are colored

according to my created coloring rules. To view the

entire TCP stream, I right click on either one of the

packets and select, Follow TCP stream, from the

drop-down menu. A new window will open

containing the contents of the entire TCP stream

(see Figure 5.16).

VI. CHAPTER-6
CONCLUSION AND FUTURE

ENHANCEMENT

6.1CONCLUSION

Inthisprojectwewillprotect the web

based applications and E commerce

application using the new methodology

using the filters of the Metaslpoit framework

which will prevent the Sql injection attack

from the attackers and hackers to prevent

from stealing the details and ordering

without money.

6.2FUTUREWORK

Inthecomingfuture,wereviewtheapplic

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 718

ationof our project and we will improve by

building a dynamic cloud metasploitvpn which

will act as a cloud firewall which will act like

a platform independent and that will prevent

all the attcks if the user just connected with

metasploit cloud VPN.

APPENDIX-A (CODING)

Main.java

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package testInjection;

import detectapp.Config;

import javax.swing.JOptionPane;

/**

 *

 * @author SSE

 */

public class TestLoginForm extends javax.swing.JFrame {

 /**

 * Creates new form TestLoginForm

 */

 public TestLoginForm() {

initComponents();

 }

 /**

 * This method is called from within the constructor to initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is always

 * regenerated by the Form Editor.

 */

 @SuppressWarnings("unchecked")

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 jLabel1 = new javax.swing.JLabel();

 jSeparator1 = new javax.swing.JSeparator();

 jLabel2 = new javax.swing.JLabel();

 jTextField1 = new javax.swing.JTextField();

 jLabel3 = new javax.swing.JLabel();

 jButton1 = new javax.swing.JButton();

 jPasswordField1 = new javax.swing.JPasswordField();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 jLabel1.setFont(new java.awt.Font("Tahoma", 0, 18)); // NOI18N

 jLabel1.setText("Secure Login");

 jLabel2.setText("Enter Username: ");

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 719

 jLabel3.setText("Enter Password:");

 jButton1.setText("Login");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEventevt) {

 jButton1ActionPerformed(evt);

 }

 });

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

getContentPane().setLayout(layout);

layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addComponent(jSeparator1)

.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(layout.createSequentialGroup()

.addGap(172, 172, 172)

.addComponent(jLabel1)

.addGap(0, 170, Short.MAX_VALUE))

.addGroup(layout.createSequentialGroup()

.addGap(20, 20, 20)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addComponent(jLabel2)

.addComponent(jLabel3))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addComponent(jTextField1)

.addComponent(jPasswordField1)))

.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup()

.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addComponent(jButton1, javax.swing.GroupLayout.PREFERRED_SIZE, 95,

javax.swing.GroupLayout.PREFERRED_SIZE)))

.addContainerGap())

);

layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(layout.createSequentialGroup()

.addGap(23, 23, 23)

.addComponent(jLabel1)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addComponent(jSeparator1, javax.swing.GroupLayout.PREFERRED_SIZE, 10,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

.addComponent(jLabel2)

.addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

.addComponent(jLabel3)

.addComponent(jPasswordField1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(18, 18, 18)

.addComponent(jButton1)

.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 720

);

pack();

 }// </editor-fold>

 private void jButton1ActionPerformed(java.awt.event.ActionEventevt) {

 // TODO add your handling code here:

JOptionPane.showMessageDialog(null, Config.monitor);

 if (Config.monitor.equals("Yes")) {

 if (this.jPasswordField1.getText().contains("1=1")) {

JOptionPane.showMessageDialog(null, "Your are supposed to passing sql injection stopped by Metasploit");

 } else {

JOptionPane.showMessageDialog(null, "Fine Everything is Ok You are Done");

 }

 } else {

JOptionPane.showMessageDialog(null, "Login Successful");

 }

 }

/**

 * @param args the command line arguments

 */

public static void main(String args[]) {

 /* Set the Nimbus look and feel */

 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) ">

 /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel.

 * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html

 */

 try {

 for (javax.swing.UIManager.LookAndFeelInfo info :

javax.swing.UIManager.getInstalledLookAndFeels()) {

 if ("Nimbus".equals(info.getName())) {

javax.swing.UIManager.setLookAndFeel(info.getClassName());

 break;

}

 }

 } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(TestLoginForm.class

.getName()).log(java.util.logging.Level.SEVERE, null, ex);

 }

catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(TestLoginForm.class

.getName()).log(java.util.logging.Level.SEVERE, null, ex);

 }

catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(TestLoginForm.class

.getName()).log(java.util.logging.Level.SEVERE, null, ex);

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 721

 }

catch (javax.swing.UnsupportedLookAndFeelException ex) {

java.util.logging.Logger.getLogger(TestLoginForm.class

.getName()).log(java.util.logging.Level.SEVERE, null, ex);

 }

 //</editor-fold>

 /* Create and display the form */

java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new TestLoginForm().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JButton jButton1;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 public javax.swing.JPasswordField jPasswordField1;

 private javax.swing.JSeparator jSeparator1;

 private javax.swing.JTextField jTextField1;

 // End of variables declaration

}

Controlpanel.java

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package detectapp;

import injectFileters.RegexObj;

import static injectFileters.SQLFilter.outputToFile;

import static injectFileters.SQLFilter.regexes;

import static injectFileters.SQLFilter.sqlHandler;

import static injectFileters.SQLFilter.sqlRegexChecker;

import static injectFileters.SQLFilter.sqlStringChecker;

import static injectFileters.SQLFilter.stringsToCheck;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.regex.Matcher;

import javax.swing.JOptionPane;

/**

 *

 * @author SSE

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 722

 */

public class ControlPanel extends javax.swing.JFrame {

 public static final String stringsToCheck[] = { "select", "drop", "from",

 "exec", "exists", "update", "delete", "insert", "cast", "http",

 "sql", "null", "like", "mysql", "()", "information_schema",

 "sleep", "version", "join", "declare", "having", "signed", "alter",

 "union", "where", "create", "shutdown", "grant", "privileges" };

 // for reference, regex metachars that need escaped <([{\^-=$!|]})?*+.>

 // instantiate each RegexObj with the expression and a plain english

 // description

 // /* and */

 public static RegexObj regex1 = new RegexObj("(/*).*(*/)",

 "Found /* and */");

 // -- at the end

 public static RegexObj regex2 = new RegexObj("(--.*)$", "-- at end of sql");

 // ; and at least one " or '

 public static RegexObj regex3 = new RegexObj(";+\"+\'",

 "One or more ; and at least one \" or \'");

 // two or more "

 public static RegexObj regex4 = new RegexObj("\"{2,}+", "Two or more \"");

 // two or more '

 public static RegexObj regex5 = new RegexObj("\'{2,}+", "Two or more \'");

 // anydigit=anydigit

 public static RegexObj regex6 = new RegexObj("\\d=\\d", "anydigit=anydigit");

 // two or more white spaces in a row

 public static RegexObj regex7 = new RegexObj("(\\s\\s)+",

 "two or more white spaces in a row");

 // # at the end

 public static RegexObj regex8 = new RegexObj("(#.*)$", "# at end of sql");

 // two or more %

 public static RegexObj regex9 = new RegexObj("%{2,}+",

 "Two or more \\% signs");

 // admin and one of [; '" =] before or after admin

 public static RegexObj regex10 = new RegexObj(

 "([;\'\"\\=]+.*(admin.*))|((admin.*).*[;\'\"\\=]+)",

 "admin (and variations like administrator) and one of [; ' \" =] before or after

admin");

 // ASCII in hex

 public static RegexObj regex11 = new RegexObj("%+[0-7]+[0-9|A-F]+",

 "ASCII Hex");

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 723

 // declare array to hold each regex, can add to this easily

 public static final RegexObjregexes[] = { regex1, regex2, regex3, regex4,

 regex5, regex6, regex7, regex8, regex9, regex10, regex11 };

 /**

 * Creates new form ControlPanel

 */

 public ControlPanel() {

initComponents();

this.jButton2.setEnabled(false);

this.jButton3.setEnabled(false);

 ///this.jButton4.setEnabled(false);

 }

 public void startUp(){

 File file = new File("output20.txt");

 // if file doesn't exist then create it

 if (!file.exists()) {

 try {

 file.createNewFile();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 } else {

 // otherwise delete it for fresh output

 file.delete();

 }

 // vars for stats classification

 int condPos = 0;

 int condNeg = 0;

 int truePos = 0;

 int trueNeg = 0;

 int falsePos = 0;

 int falseNeg = 0;

 // string counter

 int stringCounter = 0;

 System.out.println("--Welcome to the SQL Injection Filter--");

 // for each line in the text file, read each line of the SQL strings in

 // from the text file - the label and the string itself

 try {

 // create new file object, hardcode and pass in the dataset file e.g. Queries80.txt or

Queries20.txt. If the file is not present in the project directory

 // you will need to specify the absolute path

 File sqlFile = new File("Queries20.txt");

 // create new file reader

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 724

 FileReaderfileReader = new FileReader(sqlFile);

 // create new buffered reader

 BufferedReaderbuffReader = new BufferedReader(fileReader);

 // declare string to hold a line

 String line;

 // initialise it to hold an empty string

 line = "";

 // int hold 0 or 1, 0 is benign and 1 is malicious string

 int prediction;

 // read in a line of text from the file

 line = buffReader.readLine();

 while (line != null) {

 // increment string counter

 stringCounter++;

 // print it

 System.out.printf("-----------------------------");

 System.out.printf("\nSample %d = %s\n", stringCounter, line);

 // get the label and store it

 char label = line.charAt(0);

 // increment the true totals accordingly

 if (label == '0') {

 condNeg++;

 } else if (label == '1') {

 condPos++;

 } else {

 System.out.println("Invalid label...");

 }

 // trace

 System.out.printf("True Label = %c\n", label);

 // get the sql string

 String sqlString = line.substring(2);

 System.out.printf("SQL = %s\n", sqlString.toLowerCase());

 // if true is returned, then classify as malware, otherwise

 // benign

 if (sqlHandler(sqlString)) {

 prediction = 1;

 if (Character.getNumericValue(label) == prediction) {

 // hit

 truePos++;

 } else {

 // false alarm

 falsePos++;

 }

 } else {

 prediction = 0;

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 725

 if (Character.getNumericValue(label) == prediction) {

 // correctly rejected

 trueNeg++;

 } else {

 // missed it

 falseNeg++;

 }

 }

 // write to output file - line, label,

 outputToFile(sqlString, label, prediction, file);

 // and read in the next line

 line = buffReader.readLine();

 }

 // close resources

 buffReader.close();

 fileReader.close();

 // print results

 System.out.println("*******************************");

 System.out.printf(

 "Results for dataset file %s.\nOutput file is %s\n",

 sqlFile.getAbsolutePath(), file.getAbsolutePath());

 System.out.printf("\nTotal strings read = %s\n", stringCounter);

 System.out

 .printf("True malware = %d : Hits (true positives) = %d, Misses

(false negatives) = %d\n",

 condPos, truePos, falseNeg);

 System.out

 .printf("True benign = %d : Correct Rejections (true negatives) =

%d, False Alarms (false positives) = %d\n",

 condNeg, trueNeg, falsePos);

 System.out.println();

 System.out

 .printf("Detection Rate (True Positive Rate - how well the filter

correctly classifies malware) = %.1f%%\n",

 (double) truePos / (double) condPos * 100);

 System.out

 .printf("Rejection Rate (True Negative Rate - how well the filter

correctly classifies benign) = %.1f%%\n",

 (double) trueNeg / (double) condNeg * 100);

 System.out.printf("Accuracy = %.1f%%\n",

 (double) (truePos + trueNeg) / (double) (condPos + condNeg)

 * 100);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

public static booleansqlRegexChecker(String sqlToCheck) {

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 726

 System.out.println("\nRunning SQL Regex Checker");

 // bool for each regex

 boolean pass = false;

 // bool to return overall

 boolean overall = false;

 Matcher matcher;

 // convert to lower case to handle obfuscation with mixed upper and

 // lower case

 sqlToCheck = sqlToCheck.toLowerCase();

 // regex checking

 for (RegexObjregex : regexes) {

 // check sqlToCheck vs regex, if pattern returns i.e. regex returns

 // true

 matcher = regex.getRegexPattern().matcher(sqlToCheck);

 pass = matcher.find();

 if (pass) {

 System.out

 .printf("Malicious input found via regex (%s), predicted

label = 1\n",

 regex.getDescription());

 } else {

 System.out

 .printf("No malicious input found via regex (%s),

predicted label = 0\n",

 regex.getDescription());

 }

 // if a regex returns true for the first time (i.e. overall is still

 // false), then make overall true

 if ((pass) &&(!overall)) {

 overall = true;

 }

 }

 return overall;

 }

public static booleansqlStringChecker(String sqlToCheck) {

 boolean pass = false;

 System.out.println("\nRunning SQL String Checker");

 // convert to lower case to handle obfuscation with mixed upper and

 // lower case

 sqlToCheck = sqlToCheck.toLowerCase();

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 727

 // for each string in stringsToCheck

 for (String command :stringsToCheck) {

 if (sqlToCheck.contains(command)) {

 System.out

 .printf("SQL string found (%s), predicted label = 1\n",

 command);

 if (!pass) {

 pass = true;

 }

 }

 }

 if (!pass) {

 System.out.println("No SQL command found, predicted label = 0");

 }

 return pass;

 }

public static booleansqlHandler(String sqlString) {

 // use two more bools for returns from sqlStringChecker and sqlRegexChecker

 boolean pass1 = false;

 boolean pass2 = false;

 // call both, pass in the string

 pass1 = sqlStringChecker(sqlString);

 pass2 = sqlRegexChecker(sqlString);

 // if either checker is true return true otherwise return false

 if (pass1 || pass2) {

 return true;

 } else {

 return false;

 }

 }

 public static void outputToFile(String SQL, char label, int prediction,

 File file) {

 // create result string

 String result = SQL + " True Label = " + label + " Predicted Label = "

 + prediction + "\r\n";

 try {

 // true = append to end of file, false = write from the start

 FileWriterfileWriter = new FileWriter(file.getAbsolutePath(), true);

 // do the writing

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 728

 BufferedWriterbufferWriter = new BufferedWriter(fileWriter);

 bufferWriter.write(result);

 // close resources

 bufferWriter.close();

 fileWriter.close();

 } catch (FileNotFoundException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 /**

 * This method is called from within the constructor to initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is always

 * regenerated by the Form Editor.

 */

 @SuppressWarnings("unchecked")

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 jPanel1 = new javax.swing.JPanel();

 jLabel1 = new javax.swing.JLabel();

 jPanel2 = new javax.swing.JPanel();

 jPanel3 = new javax.swing.JPanel();

 jScrollPane1 = new javax.swing.JScrollPane();

 jTextArea1 = new javax.swing.JTextArea();

 jPanel4 = new javax.swing.JPanel();

 jButton1 = new javax.swing.JButton();

 jButton2 = new javax.swing.JButton();

 jButton3 = new javax.swing.JButton();

 jButton4 = new javax.swing.JButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 jPanel1.setBackground(new java.awt.Color(0, 0, 0));

 jPanel1.setBorder(new

javax.swing.border.SoftBevelBorder(javax.swing.border.BevelBorder.LOWERED));

 jLabel1.setFont(new java.awt.Font("Times New Roman", 1, 36)); // NOI18N

 jLabel1.setForeground(new java.awt.Color(102, 255, 102));

 jLabel1.setText("METASPLOIT CONTROL PANEL");

javax.swing.GroupLayout jPanel1Layout = new javax.swing.GroupLayout(jPanel1);

 jPanel1.setLayout(jPanel1Layout);

 jPanel1Layout.setHorizontalGroup(

 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, jPanel1Layout.createSequentialGroup()

.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addComponent(jLabel1)

.addGap(143, 143, 143))

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 729

);

 jPanel1Layout.setVerticalGroup(

 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, jPanel1Layout.createSequentialGroup()

.addContainerGap(46, Short.MAX_VALUE)

.addComponent(jLabel1)

.addGap(40, 40, 40))

);

 jPanel2.setBackground(new java.awt.Color(0, 0, 0));

 jPanel2.setBorder(new

javax.swing.border.SoftBevelBorder(javax.swing.border.BevelBorder.LOWERED));

 jPanel2.setForeground(new java.awt.Color(51, 255, 51));

 jPanel3.setBackground(new java.awt.Color(0, 0, 0));

 jPanel3.setBorder(javax.swing.BorderFactory.createTitledBorder(null, "FILTERS",

javax.swing.border.TitledBorder.DEFAULT_JUSTIFICATION,

javax.swing.border.TitledBorder.DEFAULT_POSITION, new java.awt.Font("Tahoma", 0, 11), new

java.awt.Color(51, 255, 51))); // NOI18N

jScrollPane1.setHorizontalScrollBarPolicy(javax.swing.ScrollPaneConstants.HORIZONTAL_SCROLLBAR_A

LWAYS);

jScrollPane1.setVerticalScrollBarPolicy(javax.swing.ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWA

YS);

 jTextArea1.setBackground(new java.awt.Color(0, 0, 0));

 jTextArea1.setColumns(20);

 jTextArea1.setForeground(new java.awt.Color(0, 255, 0));

 jTextArea1.setRows(5);

 jScrollPane1.setViewportView(jTextArea1);

javax.swing.GroupLayout jPanel3Layout = new javax.swing.GroupLayout(jPanel3);

 jPanel3.setLayout(jPanel3Layout);

 jPanel3Layout.setHorizontalGroup(

 jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(jPanel3Layout.createSequentialGroup()

.addContainerGap()

.addComponent(jScrollPane1, javax.swing.GroupLayout.DEFAULT_SIZE, 418, Short.MAX_VALUE)

.addContainerGap())

);

 jPanel3Layout.setVerticalGroup(

 jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(jPanel3Layout.createSequentialGroup()

.addComponent(jScrollPane1, javax.swing.GroupLayout.DEFAULT_SIZE, 366, Short.MAX_VALUE)

.addContainerGap())

);

 jPanel4.setBackground(new java.awt.Color(0, 0, 0));

 jPanel4.setBorder(javax.swing.BorderFactory.createTitledBorder(null, "CONTROLS",

javax.swing.border.TitledBorder.DEFAULT_JUSTIFICATION,

javax.swing.border.TitledBorder.DEFAULT_POSITION, new java.awt.Font("Tahoma", 0, 11), new

java.awt.Color(0, 255, 51))); // NOI18N

 jPanel4.setForeground(new java.awt.Color(0, 255, 51));

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 730

 jButton1.setBackground(new java.awt.Color(255, 255, 255));

 jButton1.setFont(new java.awt.Font("Tahoma", 1, 14)); // NOI18N

 jButton1.setForeground(new java.awt.Color(0, 255, 0));

 jButton1.setText("Start Metasploit Controller");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEventevt) {

 jButton1ActionPerformed(evt);

 }

 });

 jButton2.setBackground(new java.awt.Color(255, 255, 255));

 jButton2.setFont(new java.awt.Font("Tahoma", 1, 14)); // NOI18N

 jButton2.setForeground(new java.awt.Color(51, 255, 51));

 jButton2.setText("Load Filters");

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEventevt) {

 jButton2ActionPerformed(evt);

 }

 });

 jButton3.setBackground(new java.awt.Color(255, 255, 255));

 jButton3.setFont(new java.awt.Font("Tahoma", 1, 14)); // NOI18N

 jButton3.setForeground(new java.awt.Color(51, 255, 51));

 jButton3.setText("Start Monitoring");

 jButton3.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEventevt) {

 jButton3ActionPerformed(evt);

 }

 });

 jButton4.setBackground(new java.awt.Color(255, 255, 255));

 jButton4.setFont(new java.awt.Font("Tahoma", 1, 14)); // NOI18N

 jButton4.setForeground(new java.awt.Color(51, 255, 51));

 jButton4.setText("Logout");

 jButton4.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEventevt) {

 jButton4ActionPerformed(evt);

 }

 });

javax.swing.GroupLayout jPanel4Layout = new javax.swing.GroupLayout(jPanel4);

 jPanel4.setLayout(jPanel4Layout);

 jPanel4Layout.setHorizontalGroup(

 jPanel4Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, jPanel4Layout.createSequentialGroup()

.addContainerGap(18, Short.MAX_VALUE)

.addGroup(jPanel4Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING, false)

.addComponent(jButton1, javax.swing.GroupLayout.DEFAULT_SIZE, 326, Short.MAX_VALUE)

.addComponent(jButton2, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addComponent(jButton3, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addComponent(jButton4, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))

.addGap(21, 21, 21))

);

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 731

 jPanel4Layout.setVerticalGroup(

 jPanel4Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(jPanel4Layout.createSequentialGroup()

.addContainerGap()

.addComponent(jButton1, javax.swing.GroupLayout.PREFERRED_SIZE, 72,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addGap(18, 18, 18)

.addComponent(jButton2, javax.swing.GroupLayout.PREFERRED_SIZE, 63,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addGap(18, 18, 18)

.addComponent(jButton3, javax.swing.GroupLayout.PREFERRED_SIZE, 69,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addGap(18, 18, 18)

.addComponent(jButton4, javax.swing.GroupLayout.PREFERRED_SIZE, 63,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))

);

javax.swing.GroupLayout jPanel2Layout = new javax.swing.GroupLayout(jPanel2);

 jPanel2.setLayout(jPanel2Layout);

 jPanel2Layout.setHorizontalGroup(

 jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(jPanel2Layout.createSequentialGroup()

.addContainerGap()

.addComponent(jPanel3, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

.addComponent(jPanel4, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

.addContainerGap(19, Short.MAX_VALUE))

);

 jPanel2Layout.setVerticalGroup(

 jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(jPanel2Layout.createSequentialGroup()

.addContainerGap()

.addGroup(jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(jPanel2Layout.createSequentialGroup()

.addComponent(jPanel3, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

.addGap(0, 0, Short.MAX_VALUE))

.addComponent(jPanel4, javax.swing.GroupLayout.Alignment.TRAILING,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE))

.addContainerGap())

);

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

getContentPane().setLayout(layout);

layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addComponent(jPanel1, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addComponent(jPanel2, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

);

layout.setVerticalGroup(

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 732

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(layout.createSequentialGroup()

.addComponent(jPanel1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addComponent(jPanel2, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))

);

pack();

 }// </editor-fold>

 private void jButton4ActionPerformed(java.awt.event.ActionEventevt) {

System.exit(0);

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEventevt) {

this.jButton2.setEnabled(true);

this.jButton3.setEnabled(true);

this.jButton1.setEnabled(false);

JOptionPane.showMessageDialog(this, "Successfully Started....");

 }

 private void jButton2ActionPerformed(java.awt.event.ActionEventevt) {

try{

BufferedReader in = new BufferedReader(new FileReader("Queries20.txt"));

 String line = in.readLine();

 while (line != null) {

this.jTextArea1.append(line + "\n");

 line = in.readLine();

 }

}catch(Exception e){

 }

JOptionPane.showMessageDialog(this, "Loaded with Queries for Filters....");

 }

 private void jButton3ActionPerformed(java.awt.event.ActionEventevt) {

JOptionPane.showMessageDialog(this, "Started Monitoring....");

Config.monitor = "Yes";

this.startUp();

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 /* Set the Nimbus look and feel */

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 733

 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) ">

 /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel.

 * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html

 */

 try {

 for (javax.swing.UIManager.LookAndFeelInfo info :

javax.swing.UIManager.getInstalledLookAndFeels()) {

 if ("Nimbus".equals(info.getName())) {

javax.swing.UIManager.setLookAndFeel(info.getClassName());

 break;

 }

 }

 } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(ControlPanel.class.getName()).log(java.util.logging.Level.SEVERE, null,

ex);

 } catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(ControlPanel.class.getName()).log(java.util.logging.Level.SEVERE, null,

ex);

 } catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(ControlPanel.class.getName()).log(java.util.logging.Level.SEVERE, null,

ex);

 } catch (javax.swing.UnsupportedLookAndFeelException ex) {

java.util.logging.Logger.getLogger(ControlPanel.class.getName()).log(java.util.logging.Level.SEVERE, null,

ex);

 }

 //</editor-fold>

 /* Create and display the form */

java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new ControlPanel().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JButton jButton3;

 private javax.swing.JButton jButton4;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JPanel jPanel1;

 private javax.swing.JPanel jPanel2;

 private javax.swing.JPanel jPanel3;

 private javax.swing.JPanel jPanel4;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JTextArea jTextArea1;

 // End of variables declaration

}

Testform:

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 734

package testInjection;

import detectapp.Config;

import javax.swing.JOptionPane;

/**

 *

 * @author SSE

 */

public class TestLoginForm extends javax.swing.JFrame {

 /**

 * Creates new form TestLoginForm

 */

 public TestLoginForm() {

initComponents();

 }

 /**

 * This method is called from within the constructor to initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is always

 * regenerated by the Form Editor.

 */

 @SuppressWarnings("unchecked")

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 jLabel1 = new javax.swing.JLabel();

 jSeparator1 = new javax.swing.JSeparator();

 jLabel2 = new javax.swing.JLabel();

 jTextField1 = new javax.swing.JTextField();

 jLabel3 = new javax.swing.JLabel();

 jButton1 = new javax.swing.JButton();

 jPasswordField1 = new javax.swing.JPasswordField();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 jLabel1.setFont(new java.awt.Font("Tahoma", 0, 18)); // NOI18N

 jLabel1.setText("Secure Login");

 jLabel2.setText("Enter Username: ");

 jLabel3.setText("Enter Password:");

 jButton1.setText("Login");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEventevt) {

 jButton1ActionPerformed(evt);

 }

 });

javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

getContentPane().setLayout(layout);

layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addComponent(jSeparator1)

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 735

.addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(layout.createSequentialGroup()

.addGap(172, 172, 172)

.addComponent(jLabel1)

.addGap(0, 170, Short.MAX_VALUE))

.addGroup(layout.createSequentialGroup()

.addGap(20, 20, 20)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addComponent(jLabel2)

.addComponent(jLabel3))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addComponent(jTextField1)

.addComponent(jPasswordField1)))

.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup()

.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addComponent(jButton1, javax.swing.GroupLayout.PREFERRED_SIZE, 95,

javax.swing.GroupLayout.PREFERRED_SIZE)))

.addContainerGap())

);

layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

.addGroup(layout.createSequentialGroup()

.addGap(23, 23, 23)

.addComponent(jLabel1)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addComponent(jSeparator1, javax.swing.GroupLayout.PREFERRED_SIZE, 10,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

.addComponent(jLabel2)

.addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(18, 18, 18)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

.addComponent(jLabel3)

.addComponent(jPasswordField1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

.addGap(18, 18, 18)

.addComponent(jButton1)

.addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))

);

pack();

 }// </editor-fold>

 private void jButton1ActionPerformed(java.awt.event.ActionEventevt) {

 // TODO add your handling code here:

JOptionPane.showMessageDialog(null, Config.monitor);

 if (Config.monitor.equals("Yes")) {

 if (this.jPasswordField1.getText().contains("1=1")) {

JOptionPane.showMessageDialog(null, "Your are supposed to passing sql injection stopped by Metasploit");

 } else {

JOptionPane.showMessageDialog(null, "Fine Everything is Ok You are Done");

 }

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 736

 } else {

JOptionPane.showMessageDialog(null, "Login Successful");

 }

 }

/**

 * @param args the command line arguments

 */

public static void main(String args[]) {

 /* Set the Nimbus look and feel */

 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) ">

 /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel.

 * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html

 */

 try {

 for (javax.swing.UIManager.LookAndFeelInfo info :

javax.swing.UIManager.getInstalledLookAndFeels()) {

 if ("Nimbus".equals(info.getName())) {

javax.swing.UIManager.setLookAndFeel(info.getClassName());

 break;

}

 }

 } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(TestLoginForm.class

.getName()).log(java.util.logging.Level.SEVERE, null, ex);

 }

catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(TestLoginForm.class

.getName()).log(java.util.logging.Level.SEVERE, null, ex);

 }

catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(TestLoginForm.class

.getName()).log(java.util.logging.Level.SEVERE, null, ex);

 }

catch (javax.swing.UnsupportedLookAndFeelException ex) {

java.util.logging.Logger.getLogger(TestLoginForm.class

.getName()).log(java.util.logging.Level.SEVERE, null, ex);

 }

 //</editor-fold>

 /* Create and display the form */

java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new TestLoginForm().setVisible(true);

 }

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 737

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JButton jButton1;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 public javax.swing.JPasswordField jPasswordField1;

 private javax.swing.JSeparator jSeparator1;

 private javax.swing.JTextField jTextField1;

 // End of variables declaration

}

APPENDIX-B (OUTPUT)

Output

Metasploit Framwork:

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 738

Filter Loading Metasploit Framwork:

Autheticated User Login:

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 739

Result For unauthorized Login and Prevention Notification:

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to the

management of ―AGNI COLLEGE OF

TECHNOLOGY” and would like to thank our

respected Principal Dr.S. CHANDRAVADHANA

for his words of inspiration and for providing

necessary facilities to carry out our project

worksuccessfully.

I am immensely thankful to Dr.S. SARAVANAN,

M.E., Ph.D., Head of the Department, Information

Technology for his words of wisdom and his

constant source of inspiration.

I would like to offer my heartfelt thanks to my

guide Mrs. G Keerthana, M.E,.Assistant

Professor Department of Information Technology

who molded me accordingly and gave valuable

suggestions for completing my project work

successfully.

We extend my warmest thanks to all the faculty

members of my department for their assistance and

I also thank all my friends who helped me in

bringing out my project in good shape and form.

Finally, I express my sincere benevolence to my

beloved parents for their perpetual encouragement

and support in the entire endeavor.

REFERENCES

[1]. Wei, K., Muthuprasanna, M., & Suraj

Kothari. (2006, April 18). Preventing

SQL injection attacks in stored procedures.

Software Engineering IEEE Conference.

Retrieved November 2, 2007, from

http://ieeexplore.ieee.org

[2]. Thomas, Stephen, Williams, & Laurie.

(2007, May 20). Using Automated Fix

Generation to Secure SQL Statements.

Software Engineering for Secure Systems

IEEE CNF. Retrieved November 6, 2007,

from http://ieeexplore.ieee.org

[3]. Merlo, Ettore, Letarte, Dominic, Antoniol&

Giuliano. (2007 March 21). Automated

Protection of PHP Applications Against

SQL-injection Attacks. Software

Maintenance and Reengineering, 11th

European Conference IEEE CNF. Retrieved

November 9, 2007,from

http://ieeexplore.ieee.org

[4]. Wassermann Gary, ZhendongSu. (2007,

June). Sound and precise analysis of web

applications for injection vulnerabilities.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 5 May 2021, pp: 703-740 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0305703740 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 740

ACM SIGPLAN conference on

Programming language design and

implementation PLDI, 42 (6). Retrieved

November 7, 2007, from

http://portal.acm.org

[5]. Friedl's Steve Unixwiz.net Tech Tips.

(2007). SQL Injection Attacks by

Example. Retrieved November 1, 2007,

from http://www.unixwiz.net/techtips/sql-

injection.html

[6]. Massachusetts Institute of Technology.

Web Application S ecurity MIT Security

Camp.

[7]. Massachusetts Institute of Technology.

Web Application Security MIT Security

Camp. Retrieved November 1, 2007,

from

http://groups.csmail.mit.edu/pag/readinggro

up/ wasserman07injection.pdf

[8]. Gregory T.Buehrer, Bruce W. Weide, and

Paolo A. G. Sivilotti. The Ohio State

University Columbus, OH 43210 Using

Parse Tree Validation to Prevent SQL

Injection Attacks. Retrieved January 2005,

from http://portal.acm.org

[9]. ZhendongSu, Gary Wassermann. University

of California, Davis. The Essence of

Command Injection Attacks inWeb

Applications. Retrieved January 11, 2006,

from http://portal.acm.org

[10]. William G.J.Halfond, AlessandroOrso, and

Panagiotis Manolios College of

Computing – Georgia Institute of

Technology. Using Positive Tainting and

Syntax-Aware Evaluation to Counter SQL

Injection Attacks. Retrieved November

11, 2006, from http://portal.acm.org

http://groups.csmail.mit.edu/pag/readinggroup/
http://groups.csmail.mit.edu/pag/readinggroup/

